-
Contento J, Mass P, Cleveland V, Aslan S, Matsushita H, Hayashi H, Nguyen V, Kawaji K, Loke YH, Nelson K, Johnson J, Krieger A, Olivieri L, Hibino N, Location Matters: Offset in Tissue Engineered Vascular Graft Implantation Location Affects Wall Shear Stress in Porcine Models, JTCVS Open (2022), doi: https://doi.org/10.1016/j.xjon.2022.08.006
-
Elliott MB, Matsushita H, Shen J, Yi J, Inoue T, Brady T, Santhanam L, Mao HQ, Hibino N, Gerecht S. Off-the-Shelf, Heparinized Small Diameter Vascular Graft Limits Acute Thrombogenicity in a Porcine Model. Acta Biomater. 2022 Aug 3:S1742-7061(22)00463-9. doi: 10.1016/j.actbio.2022.07.061. Epub ahead of print. PMID: 35933100.
-
Matsushita H, Hayashi H, Nurminsky K, Dunn T, He Y, Pitaktong I, Koda Y, Xu S, Nguyen V, Inoue T, Rodgers D, Nelson K, Johnson J, Hibino N. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vasc Sci. 2022 Feb 22;3:182-191. doi: 10.1016/j.jvssci.2022.01.002. PMID: 35495567; PMCID: PMC9044007.
-
Liu X, Aslan S, Kim B, Warburton L, Jackson D, Muhuri A, Subramanian A, Mass P, Cleveland V, Loke YH, Hibino N, Olivieri L, Krieger A. Computational Fontan Analysis: Preserving Accuracy While Expediting Workflow. World J Pediatr Congenit Heart Surg. 2022 May;13(3):293-301. doi: 10.1177/21501351211073619. PMID: 35446218.
-
Liu X, Hibino N, Loke YH, Kim B, Mass P, Fuge M, Olivieri L, Krieger A. Surgical Planning and Optimization of Patient-Specific Fontan Grafts with Uncertain Post-Operative Boundary Conditions and Anastomosis Displacement. IEEE Trans Biomed Eng. 2022 Apr 27;PP. doi: 10.1109/TBME.2022.3170922. Epub ahead of print. PMID: 35476577.
-
Fukunishi T, Lui C, Ong CS, Dunn T, Xu S, Smoot C, Smalley R, Harris J, Gabriele P, Santhanam L, Lu S, Hibino N. Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery. J Tissue Eng Regen Med. 2022 Apr;16(4):346-354. doi: 10.1002/term.3282. Epub 2022 Jan 27. PMID: 35084808.
-
Miyamoto M, Andersen P, Sulistio E, Liu X, Murphy S, Kannan S, Nam L, Miyamoto W, Tampakakis E, Hibino N, Uosaki H, Kwon C. Noncanonical Notch signals have opposing roles during cardiac development. Biochem Biophys Res Commun. 2021 Nov 5;577:12-16. doi: 10.1016/j.bbrc.2021.08.094. Epub 2021 Sep 2. PMID: 34487959; PMCID: PMC8484041.
-
Mandell JG, Loke YH, Mass PN, Cleveland V, Delaney M, Opfermann J, Aslan S, Krieger A, Hibino N, Olivieri LJ. Altered hemodynamics by 4D flow cardiovascular magnetic resonance predict exercise intolerance in repaired coarctation of the aorta: an in vitro study. J Cardiovasc Magn Reson. 2021 Sep 6;23(1):99. doi: 10.1186/s12968-021-00796-3. PMID: 34482836; PMCID: PMC8420072.
-
Liu X, Kim B, Loke YH, Mass P, Olivieri L, Hibino N, Fuge M, Krieger A. Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient- Specific Grafts for Fontan Surgery. IEEE Trans Biomed Eng. 2022 Jan;69(1):186-198. doi: 10.1109/TBME.2021.3091113. Epub 2021 Dec 23. PMID: 34156934; PMCID: PMC8753752.
- Mechanical stimulation enhances development of scaffold-free, 3D-printed, engineered heart tissue grafts. J Tissue Eng Regen Med. 2021 Mar 21.
- Fast-degrading TEVGs Lead to Increased ECM Cross-linking Enzymes Expression. Tissue Eng Part A. 2021 Feb 18. doi: 10.1089/ten.TEA.2020.0266.
- Aorta size mismatch predicts decreased exercise capacity in patients with successfully repaired coarctation of the aorta. J Thorac Cardiovasc Surg. 2020 Oct 7:S0022-5223(20)32707-0.
- Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation. Olivieri L, Loke YH, Hibino N, Fuge M, Krieger A. Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2319-2323.
- Non-invasive Prediction of Peak Systolic Pressure Drop across Coarctation of Aorta using Computational Fluid Dynamics. Mass P, Loke YH, Warburton L, Liu X, Hibino N, Olivieri L, Krieger A. Non-invasive Prediction of Peak Systolic Pressure Drop across Coarctation of Aorta using Computational Fluid Dynamics. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2295-2298.
- Biomimetic Model of Contractile Cardiac Tissue with Endothelial Networks Stabilized by Adipose-Derived Stromal/Stem Cells. Morrissette-McAlmon J, Ginn B, Somers S, Fukunishi T, Thanitcul C, Rindone A, Hibino N, Tung L, Mao HQ, Grayson W. Biomimetic Model of Contractile Cardiac Tissue with Endothelial Networks Stabilized by Adipose-Derived Stromal/Stem Cells. Sci Rep. 2020 May 20;10(1):8387.
- Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater. 2020 Jul 1;110:68-81.
- H Matsushita, T Inoue, S Abdollahi, E Yeung, CS Ong, C Lui, I Pitaktong, Nelson K, Johnson J, Hibino N. Corrugated nanofiber tissue engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model. JVS: Vascular Science 2020
- Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med. 2020 Apr 1;12(537):eaax6919.
- Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting. Ong CS, Pitaktong I, Hibino N. Methods Mol Biol. 2020;2140:183-197. doi: 10.1007/978-1-0716-0520-2_12.
- Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study. Loke YH, Kim B, Mass P, Opfermann JD, Hibino N, Krieger A, Olivieri L. J Thorac Cardiovasc Surg. 2020 Jan 8. pii: S0022-5223(20)30050-7.
- In vivo implantation of 3-dimensional printed customized branched tissue engineered vascular graft in a porcine model. Yeung E, Inoue T, Matsushita H, Opfermann J, Mass P, Aslan S, Johnson J, Nelson K, Kim B, Olivieri L, Krieger A, Hibino N. J Thorac Cardiovasc Surg. 2019 Oct 9. pii: S0022-5223(19)32170-1
- Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids. Pitaktong I, Lui C, Lowenthal J, Mattson G, Jung WH, Bai Y, Yeung E, Ong CS, Chen Y, Gerecht S, Hibino N. Tissue Eng Part C Methods. 2020 Feb;26(2):80-90.
- Different degradation rates of nanofiber vascular grafts in small and large animal models. Fukunishi T, Ong CS, Yesantharao P, Best CA, Yi T, Zhang H, Mattson G, Boktor J, Nelson K, Shinoka T, Breuer CK, Johnson J, Hibino N. J Tissue Eng Regen Med. 2019 Nov 22. doi: 10.1002/term.2977
- Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. Yeung E, Fukunishi T, Bai Y, Bedja D, Pitaktong I, Mattson G, Jeyaram A, Lui C, Ong CS, Inoue T, Matsushita H, Abdollahi S, Jay SM, Hibino N. J Tissue Eng Regen Med. 2019 Nov;13(11):2031-2039.
- Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. Jiang Z, Erol O, Chatterjee D, Xu W, Hibino N, Romer LH, Kang SH, Gracias DH. ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28289-28295.
- Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Abdollahi S, Boktor J, Hibino N. Transl Res. 2019 Sep;211:123-138.
- Regenerative and durable small-diameter graft as an arterial conduit. Elliott MB, Ginn B, Fukunishi T, Bedja D, Suresh A, Chen T, Inoue T, Dietz HC, Santhanam L, Mao HQ, Hibino N, Gerecht S. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12710-12719.
- Dual-Gel 4D Printing of Bioinspired Tubes. Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, Chatterjee D, Hibino N, Romer LH, Kang SH, Nguyen TD, Gracias DH. ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8492-8498.
- Mechanical Characterization of hiPSC-Derived Cardiac Tissues for Quality Control. Seungman Park, Cecillia Lui, Wei-Hung Jung, Debonil Maity, Chin Siang Ong, Joshua Bush, Venkat Maruthamuthu, Narutoshi Hibino, and Yun Chen. Adv. Biosys. 2018, 2, 1800251
- Formation of neoarteries with optimal remodeling using rapidly degrading textile vascular grafts. Fukunishi T, Ong CS, Lui C, Pitaktong I, Smoot C, Harris J, Gabriele P, Vricella L, Santhanam L, Lu S, Hibino N. Tissue Eng Part A. 2018 Nov 1. doi: 10.1089/ten.TEA.2018.0167. [Epub ahead of print
- A Net Mold-based Method of Scaffold-free Three-Dimensional Cardiac Tissue Creation. Bai Y, Yeung E, Lui C, Ong CS, Pitaktong I, Huang C, Inoue T, Matsushita H, Ma C, Hibino N. J Vis Exp. 2018 Aug 5;(138). doi: 10.3791/58252.
- 3D printing of fetal heart using 3D ultrasound imaging data. Chen SA, Ong CS, Hibino N, Baschat AA, Garcia JR, Miller JL. Ultrasound Obstet Gynecol. 2018 Dec;52(6):808-809. doi: 10.1002/uog.19166.
- Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training. Chen SA, Ong CS, Malguria N, Vricella LA, Garcia JR, Hibino N. World J Pediatr Congenit Heart Surg. 2018 Jul;9(4):454-458. doi: 10.1177/2150135118771323.
- Virtual Reality in Neurointervention. Ong CS, Deib G, Yesantharao P, Qiao Y, Pakpoor J, Hibino N, Hui F, Garcia JR. J Vasc Interv Neurol. 2018 Jun;10(1):17-22.
- 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. Biomed Res Int. 2018 Apr 22;2018:6497242. doi: 10.1155/2018/6497242. eCollection 2018
- Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation. Best C, Fukunishi T, Drews J, Khosravi R, Hor K, Mahler N, Yi T, Humphrey JD, Johnson J, Breuer CK, Hibino N. Tissue Eng Part A. 2018 Aug;24(15-16):1251-1261. doi: 10.1089/ten.TEA.2017.0483.
- In vivo therapeutic applications of cell spheroids. Ong CS, Zhou X, Han J, Huang CY, Nashed A, Khatri S, Mattson G, Fukunishi T, Zhang H, Hibino N. Biotechnol Adv. 2018 Mar – Apr;36(2):494-505. doi: 10.1016/j.biotechadv.2018.02.003.
- Role of virtual reality in congenital heart disease. Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, Garcia JR, Gaur L. Congenit Heart Dis. 2018 May;13(3):357-361. doi: 10.1111/chd.12587.
- Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. Siallagan D, Loke YH, Olivieri L, Opfermann J, Ong CS, de Zélicourt D, Petrou A, Daners MS, Kurtcuoglu V, Meboldt M, Nelson K, Vricella L, Johnson J, Hibino N, Krieger A. J Thorac Cardiovasc Surg. 2018 Apr;155(4):1734-1742. doi: 10.1016/j.jtcvs.2017.11.068.
- 3D bioprinting using stem cells. Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, Zhang H, Hibino N. Pediatr Res. 2018 Jan;83(1-2):223-231. doi: 10.1038/pr.2017.252.
- Review of Vascular Graft Studies in Large Animal Models. Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Tissue Eng Part B Rev. 2018 Apr;24(2):133-143. doi: 10.1089/ten.TEB.2017.0350.
- The use of 3D printing in cardiac surgery. Ong CS, Hibino N. J Thorac Dis. 2017 Aug;9(8):2301-2302. doi: 10.21037/jtd.2017.07.73.
- Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models.Ong CS, Fukunishi T, Liu RH, Nelson K, Zhang H, Wieczorek E, Palmieri M, Ueyama Y, Ferris E, Geist GE, Youngblood B, Johnson J, Hibino N. Tissue Eng Part C Methods. 2017 Nov;23(11):728-735. doi: 10.1089/ten.TEC.2017.0217.
- Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting. Ong CS, Fukunishi T, Nashed A, Blazeski A, Zhang H, Hardy S, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli G, Hibino N. J Vis Exp. 2017 Jul 2;(125). doi: 10.3791/55438.
- Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N. Sci Rep. 2017 Jul 4;7(1):4566. doi: 10.1038/s41598-017-05018-4.
- Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract. Ong CS, Loke YH, Opfermann J, Olivieri L, Vricella L, Krieger A, Hibino N. World J Pediatr Congenit Heart Surg. 2017 May;8(3):391-393. doi: 10.1177/2150135117692777.
- Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044.
- Tissue engineered vascular grafts: current state of the field. Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Expert Rev Med Devices. 2017 May;14(5):383-392. doi: 10.1080/17434440.2017.1324293.
- Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066
- Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting. Moldovan NI, Hibino N, Nakayama K. Tissue Eng Part B Rev. 2017 Jun;23(3):237-244. doi: 10.1089/ten.TEB.2016.0322.
- Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. PLoS One. 2016 Jul 28;11(7):e0158555. doi: 10.1371/journal.pone.0158555.
- Three Dimensional Printing: Applications in Surgery for Congenital Heart Disease. Hibino N. World J Pediatr Congenit Heart Surg. 2016 May;7(3):351-2. doi: 10.1177/2150135116644886.